1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
use std::io::{Read, Write};
use tape::Tape;
use program::Program;
use super::{CYCLE_LIMIT, Error, Instruction};

/// A brainfuck interpreter, with the needed state for execution.
///
/// For more information about the brainfuck language in general see the
/// [top level documentation][top-doc] for this crate. This implmentation
/// of a brainfuck interpreter allows for optional programs, readers, and
/// writers. Each of which can be set dynamically with the `load`,
/// `read_from`, and `write_to` methods. The interpreter is also in charge
/// of managing the program counter, which is `0` by default.
///
/// Each interpreter stores a tape for the execution of the program. The
/// current tape uses a dynamically allocated array of `TAPE_LENGTH` elements.
///
/// Other fields used for instrumentation may also be stored in the
/// interpreter.
///
/// [top-doc]: index.html
#[derive(Default)]
pub struct Interpreter<'a, T: Tape> {
    program: Option<Program>,
    reader: Option<&'a mut Read>,
    writer: Option<&'a mut Write>,
    tape: Box<T>,
    pc: usize,
    cycles: u64,
}

impl<'a, T: Tape + Default> Interpreter<'a, T> {
    /// Create a new interpreter with the given program, optional reader,
    /// and writer.
    pub fn new<R: Read, W: Write>(program: Program, reader: &'a mut R, writer: &'a mut W) -> Interpreter<'a, T> {
        let mut interp = Self::default();
        interp.load(program);
        interp.read_from(reader);
        interp.write_to(writer);
        interp
    }

    /// Load a program for the interpreter to run.
    pub fn load(&mut self, program: Program) -> &mut Self {
        self.pc = 0;
        self.program = Some(program);
        self
    }

    /// Use the given reader for the `Input` instruction.
    pub fn read_from<R: Read>(&mut self, reader: &'a mut R) -> &mut Self {
        self.reader = Some(reader);
        self
    }

    /// Use the given writer for the `Output` instruction.
    pub fn write_to<W: Write>(&mut self, writer: &'a mut W) -> &mut Self {
        self.writer = Some(writer);
        self
    }

    /// Run the interpreter.
    pub fn run(&mut self) -> Result<(), Error> {
        while let Some(r) = try!(self.step()) {
            if let Err(e) = r {
                return Err(e)
            }
        };
        Ok(())
    }

    /// Run the interpreter with a callback hook.
    pub fn run_with_callback<F>(&mut self, mut hook: F) -> Result<(), Error>
    where F: FnMut(&mut Self, &Instruction) {
        while let Some(r) = try!(self.step()) {
            match r {
                Ok(i) => hook(self, &i),
                Err(e) => return Err(e),
            }
        };
        Ok(())
    }

    fn step(&mut self) -> Result<Option<Result<Instruction, Error>>, Error> {
        if self.cycles >= CYCLE_LIMIT {
            return Ok(Some(Err(Error::CycleLimit)))
        }
        let instruction = match self.program {
            Some(ref p) => match p.get(self.pc) {
                Some(i) => i,
                None => return Ok(None),
            },
            None => return Err(Error::NoProgram),
        };
        match self.execute(instruction) {
            Ok(_) => {
                self.cycles += 1;
                Ok(Some(Ok(instruction)))
            },
            Err(e) => Ok(Some(Err(e))),
        }
    }

    fn execute(&mut self, instruction: Instruction) -> Result<Instruction, Error> {
        match instruction {
            Instruction::IncPtr => {
                try!(self.tape.inc_ptr());
            },
            Instruction::DecPtr => {
                try!(self.tape.dec_ptr());
            },
            Instruction::IncVal => {
                try!(self.tape.inc_val());
            },
            Instruction::DecVal => {
                try!(self.tape.dec_val());
            },
            Instruction::Output => {
                if let Some(ref mut w) = self.writer {
                    try!(w.write(&[**self.tape]));
                }
            },
            Instruction::Input => {
                if let Some(ref mut r) = self.reader {
                    if let Some(b) = r.bytes().next() {
                        **self.tape = try!(b);
                    }
                }
            },
            Instruction::SkipForward(iptr) => {
                if **self.tape == 0 {
                    self.pc = iptr;
                }
            },
            Instruction::SkipBackward(iptr) => {
                if **self.tape != 0 {
                    self.pc = iptr;
                }
            },
        };
        self.pc = self.pc + 1;
        Ok(instruction)
    }
}

#[cfg(test)]
mod tests {
    use std::io;
    use Instruction;
    use program::Program;
    use tape::VecTape;
    use super::*;

    // Public functions.

    #[test]
    fn new() {
        let program = Program::parse("++>+.").unwrap();
        let mut reader = io::empty();
        let mut writer = Vec::<u8>::new();
        let _ = Interpreter::<VecTape>::new(program, &mut reader, &mut writer);
    }

    #[test]
    fn load() {
        let program = Program::parse("++>+.");
        let mut interp = Interpreter::<VecTape>::default();
        interp.load(program.unwrap());
    }

    #[test]
    fn run() {
        let program = Program::parse("++>+.");
        let mut interp = Interpreter::<VecTape>::default();
        interp.load(program.unwrap());
        assert!(interp.run().is_ok());
    }

    #[test]
    fn run_with_callback() {
        let program = Program::parse("++>+.");
        let mut interp = Interpreter::<VecTape>::default();
        interp.load(program.unwrap());
        let mut count = 0;
        assert!(interp.run_with_callback(|_, _| {
            count = count + 1
        }).is_ok());
        assert_eq!(count, 5);
    }

    // Private tests.

    #[test]
    fn step() {
        let program = Program::parse("++>+.");
        let mut interp = Interpreter::<VecTape>::default();
        interp.load(program.unwrap());
        let result = interp.step();
        assert!(result.is_ok());
        let run = result.unwrap();
        assert!(run.is_some());
        assert!(run.unwrap().is_ok());
    }

    #[test]
    fn execute() {
        let mut interp = Interpreter::<VecTape>::default();
        let instruction = Instruction::IncVal;
        let result = interp.execute(instruction);
        assert!(result.is_ok());
    }

    #[test]
    fn single_step() {
        let program = Program::parse(">");
        let mut interp = Interpreter::<VecTape>::default();
        interp.load(program.unwrap());
        interp.step().unwrap().unwrap().unwrap();
    }

    #[test]
    fn empty_io() {
        let mut reader = io::empty();
        let mut writer = Vec::<u8>::new();
        let program = Program::parse("+,.");
        {
            let mut interp = Interpreter::<VecTape>::default();
            interp.read_from(&mut reader);
            interp.write_to(&mut writer);
            interp.load(program.unwrap());
            interp.run().unwrap();
        }
        assert_eq!(writer, [1]);
    }
}